Categories: world

Observation of two neutrino double electron capture in 124 Xe with XENON1T

first Winter, R. G. Double K capture and simple K capture with positron emission. Phys. Rev . 142-144 (1955). 2nd Gavrilyuk, Y. M. et al. Indications of 2 v 2K catch in 78 Kr. Phys. Reef. C 87 035501 (2013). 3rd Ratkevich, S. S. et al. Comparative study of production with double K shell events in one and double electron capture decay. Phys. Reef. C 96 065502 (2017). 4th Meshik, AP, Hohenberg, CM, Pravdivtseva, OV & Kapusta, YS Weak decay of 130 and Ba: geochemical measurements. Phys. Reef. C 64 035205 (2001). 5th Pujol, M., Marty, B., Burnard, P. & Philippot, P. Xenon in Archeanbarit: Weak decay of Ba, mass-dependent isotope fractionation and implication for barite formation. Geochim. Cosmochim. Acta 73 6834-6846 (2009). 6th Gavriluk, Y. M. et al. 2K Capture in 124 Xe: Results of data processing for 37.7 kg day exposure. Phys. Part. Nucl . 563-568 (2018). 7th Abe, K. et al. Improved search for two neutrino double electron capture on Xe and Xe using particle identification in XMASS-I. Progr. Theor. Exp. Phys . 2018 053D03 (2018). 8th Suhonen, J. Double beta decays of [X459015] Xe was examined in the QRPA frame. J. Phys. G Nucl. Phys . 40 075102 (2013). ninth Aunola, M. & Suhonen, J. Systematic study of beta and double beta decomposition to excited end states. Nucl. Phys. A 602 133-166 (1996). 10th Singh, S., Chandra, R., Rath, PK, Raina, PK & Hirsch, JG Nuclear deformation and the two neutrino-double β-decomposition in 124.126 Xe, 128.130…

  • first

    Winter, R. G. Double K capture and simple K capture with positron emission. Phys. Rev . 142-144 (1955).

  • 2nd Gavrilyuk, Y. M. et al. Indications of 2 v 2K catch in 78 Kr. Phys. Reef. C 87 035501

    (2013).

  • 3rd Ratkevich, S. S. et al. Comparative study of production with double K shell events in one and double electron capture decay. Phys. Reef. C 96 065502 (2017).
  • 4th

    Meshik, AP, Hohenberg, CM, Pravdivtseva, OV & Kapusta, YS Weak decay of 130 and Ba: geochemical measurements. Phys. Reef. C 64 035205 (2001).

  • 5th

    Pujol, M., Marty, B., Burnard, P. & Philippot, P. Xenon in Archeanbarit: Weak decay of Ba, mass-dependent isotope fractionation and implication for barite formation. Geochim. Cosmochim. Acta 73 6834-6846 (2009).

  • 6th Gavriluk, Y. M. et al. 2K Capture in 124 Xe: Results of data processing for 37.7 kg day exposure. Phys. Part. Nucl . 563-568 (2018).
  • 7th

    Abe, K. et al. Improved search for two neutrino double electron capture on Xe and Xe using particle identification in XMASS-I. Progr. Theor. Exp. Phys . 2018 053D03 (2018).

  • 8th

    Suhonen, J. Double beta decays of [X459015] Xe was examined in the QRPA frame. J. Phys. G Nucl. Phys . 40 075102 (2013).

  • ninth

    Aunola, M. & Suhonen, J. Systematic study of beta and double beta decomposition to excited end states. Nucl. Phys. A 602 133-166 (1996).

  • 10th

    Singh, S., Chandra, R., Rath, PK, Raina, PK & Hirsch, JG Nuclear deformation and the two neutrino-double β-decomposition in 124.126 Xe, 128.130 130,132 Ba and [150450101] Nd isotopes. Eur. Phys. J. A 33 375-388 (2007).

  • eleventh

    Hirsch, M., Muto, K., Oda, T. & Klapdor-Kleingrothaus, HV Core structure structure calculation of P + P + P + / EC and EC / EC decay matrix elements. Z. Phys. A [3465] 151-160 (1994).

  • 12th

    Rumyantsev, OA & Urine, MH The Strength of Analog and Gamow-Teller Giant Resonances and Obstacles to 2 pp decay rate. Phys. Lett. B 443 51-57 (1998).

  • thirteenth

    Pirinen, P. & Suhonen, J. Systematic Direction on p and 2 [A] = 100-136 nuclei. Phys. Reef. C 91 054309 (2015).

  • fourteenth

    Coello Pérez, EA, Menéndez, J. & Schwenk, A. Two-neutrino double electron capture on 124Xe based on an effective theory and nuclear shell model. Preprint at https://arxiv.org/abs/1809.04443 (2018).

  • 15th

    Majorana, E. The theory of symmetry of electrons and positrons.

  • Nuovo Cimento 14 171-184 (1937).
  • 16th

    Bernabeu, J., De Rujula, A. & Jarlskog, C. Neutrinolous Double Electron Capture as a Mass Measurement Tool . Nucl. Phys. B 223 15-28 (1983).

  • 17th

    Sujkowski, Z. & Wycech, S. Neutrinoless double electron capture: a tool for seeking Majorana neutrinos. Phys. Reef. C 70 052501 (2004).

  • 18th Aprile, E. et al. The scope of physics for the experiment with XENON1T dark material. J. Cosmol. Astro Party. Phys . 1604 027 (2016).
  • 19th Mount, B.J. et al. LUX ZEPLIN (LZ). Report No. LBNL-1007256 (Lawrence Berkeley National Laboratory, 2017).
  • 20th Aalbers, J. et al. DARWIN: Towards the ultimate dark material detector. J. Cosmol. Astro Party. Phys . 1611 017 (2016).
  • 21st

    Doi, M. & Kotani, T. Neutrinoless double beta disintegration sites. Prog. Theor. Phys . 139-159 (1993).

  • 22nd

    Cullen, D. Program RELAX: A code designed to calculate atomic bypass spectra of X-rays and electrons. Report no. UCRL-ID-110438 (Lawrence Livermore National Laboratory, 1992).

  • 23rd

    Buchmuller, W., Peccei, R. & Yanagida, T. Leptogenesis as the origin of matter. Yet. Reef. Nucl. Part. Sci . 55 311-355 (2005).

  • 24th Nesterenko, D.A. et al. Double beta conversions in isobaric triplicates with mass numbers = 124, 130 and 136. Phys. Reef. C 86 044313 (2012).
  • 25th

    Aprile, E. et al. Search for two-neutrino-double electron recording of Xe with XENON100. Phys. Reef. C 95 024605 (2017).

  • 26th Aprile, E. et al. The experiment with XENON1T dark material. Eur. Phys. J. C [77659005] 881 (2017).
  • 27th Aprile, E. et al. Results of darker matter from an exposure of a ton × × XENON1T. Phys. Rev Lett . 121302 (2018).
  • 28th Aprile, E. et al. Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment. J. Instrum . 9 P11006 (2014).
  • 29th

    Aprile, E. et al. Material radio analysis and selection for the XENON1T dark material experiment. Eur. Phys. J. C 77 890 (2017).

  • 30 °. [1965] Aprile, E. et al. Remove krypton from xenon by cryogenic distillation to the ppq level. Eur. Phys. J. C 77 275 (2017).
  • 31st De Laeter, J. et al. The atomic weight of the elements. Review 2000 (IUPAC technical report). Pure Appl. Chem . 75 683-800 (2003).
  • 32nd

    Linstrom, P. & Mallard, WGE NIST Chemistry WebBook, NIST Standard Reference Database No. 69 https: / doi.org/10.18434/T4D303 (2018).

  • 33rd Zhang, H. et al. Dark material direct search sensitivity in the PandaX-4T experiment. Sci. China Phys. Mech. Astron . 62 31011 (2019).
  • 34th [1965] Manalaysay, A. et al. Spatial smooth calibration of a low energy liquid xenon detector using 83m Kr. Rev. Sci. Instrum . 81 073303 (2010).
  • 35th Conti, E. et al. Correlated fluctuations between luminescence and ionization in liquid xenon. Phys. Reef. B 68 054201 (2003).
  • 36th Aprile, E., Giboni, KL, Majewski, P., Ni, K. & Yamashita, M. Observation of anti-correlation between scintillation and ionization for MeV gamma rays in liquid xenon. Phys. Reef. B 76 014115 (2007).
  • 37th

    Szydagis, M. et al. NEST: A comprehensive model for scintillation yield in liquid xenon. J. Instrum . 6 P10002 (2011).

  • 38th Akerib, D. S. et al. Signal exchange, energy solution and recombination fluctuations in liquid xenon. Phys. Reef. D 95 012008 (2017).
  • 39th

    Aprile, E. et al. Experiment XENON100 Dark Matts. Astropart. Phys . 573-590 (2012).

  • Share
    Published by
    Faela