Categories: world

Non-linear increase of Greenland's runoff in response to post-industrial arctic warming

first Hanna, E. et al. Isbalans balance and climate change. Nature 498 51-59 (2013). 2nd Enderlin, E. M. et al.…

  • first

    Hanna, E. et al. Isbalans balance and climate change. Nature 498 51-59 (2013).

  • 2nd

    Enderlin, E. M. et al. An improved mass budget for Greenland ice. Geophys. Res. Light . 41

    2013GL059010 (2014).

  • 3rd

    van den Broeke, M.R. et al. On the latest contribution from the green ice team to the sea level change. Cryosphere 10 1933-1946 (2016).

  • 4th

    Tedesco, M. et al. Evidence and analysis of 2012 Greenland record from spaceborne observations, a regional climate model and reanalysis data. Cryosphere 7 615-630 (2013).

  • 5th

    Noël, B. et al. Modeling the climate and surface mass balance of the ice sheets with RACMO2-Part 1: Greenland (1958-2016). Cryosphere 12 811-831 (2018).

  • 6th

    Fettweis, X. et al. Reconstructions of the 1900-2015 Greenland ice machine’s surface mass balance using the regional climate MAR model.

  • Cryosphere 11 1015-1033 (2017).
  • 7th

    Humphrey, N. F., Harper, J.T. & Pfeffer, W.T. Thermal trace of melt water retention in Greenland’s accumulation area. J. Geophys. Res . 117 F01010 (2012).

  • 8th

    Machguth, H. et al. Greenland’s smelt water storage in firs limited by nearby ice formation. Nat. Clim. Chang . 6 390-393 (2016).

  • ninth

    Thornalley, D. J. R. et al. Anomalously weak Labrador Sea Convection and Atlantic turn over the past 150 years. Nature 556 227-230 (2018).

  • 10th

    Bennartz, R. et al. July 2012 Greenland’s melt spread propagated by low-level floating clouds. Nature 496 83-86 (2013).

  • eleventh

    Van Tricht, K. et al. Clouds improve Greenland’s meltwater drainage. Nat. Commun . 7 10266 (2016).

  • 12th

    Hofer, S., Tedstone, AJ, Fettweis, X. & Bamber, JL Mining cloud cover drives the latest mass loss on Greenland Ice Ark. Sci. Adv . 3 e1700584 (2017).

  • thirteenth

    Fausto, R. S. et al. The implication of non-radial energy flows dominates the green ice layer, exceptionally, the digestion of the ablation site in 2012. Geophys. Res. Light . 43 2649-2658 (2016).

  • fourteenth

    Hanna, E. et al. Atmospheric and oceanic climate forcing the extraordinary greenery of Isytan’s melting in summer 2012. Int. J. Climatol . 34 1022-1037 (2014).

  • 15th

    Keegan, KM, Albert, MR, McConnell, JR & Baker, I. Climate change and forest fires are synergistic widespread melting events of Greenland’s ice sheet. Proc. Natl Acad. Sci. USA 111 7964-7967 (2014).

  • 16th

    Graeter, K.A. et al. Iceberg register of Western Greenland melts and climate forces. Geophys. Res. Light . 45 3164-3172 (2018).

  • 17th

    Herron, M.M., Herron, S.L. & Langway, C.C. Climate Signal of Ice Fusion Properties in Southern Greenland. Nature 293 389-391 (1981).

  • 18th

    Kameda, T. et al. Melting properties of ice core from Site J, southern Greenland: some consequences for the summer climate since 1550. Ann. Glaciol . 21 51-58 (1995).

  • 19th

    van den Broeke, M. et al. Greenland’s meltdown loss: New development in observation and modeling. Curr. Clim. Change Rep . 3 345-356 (2017).

  • 20th

    Ahlstrøm, AP, Petersen, D., Langen, PL, Citterio, M. & Box, JE Abrupt shift in observed runoff from the southwest Greenland. Sci. Adv . 3 e1701169 (2017).

  • 21st

    Abram, N.J. et al. Early initiation of industrial era warming across the oceans and continents. Nature 536 411-418 (2016).

  • 22nd

    Liu, J. et al. Has the Icelandic ice loss contributed to increased meltdown of Greenland ice? J. Clim . 29 3373-3386 (2016).

  • 23rd

    Fettweis, X. et al. Short Communication “The important role in the mid-troposphere atmosphere circulation in the last surface melting over the green ice layer”. Cryosphere 7 241-248 (2013).

  • 24th

    Ding, Q. et al. Tropical force of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature 509 209-212 (2014).

  • 25th

    Ding, Q. et al. The influence of high-latitude atmospheric circulation changes during the summer Arctic sea ice. Nat. Clim. Chang . 7 289-295 (2017).

  • 26th

    Abram, N.J. et al. The melting rate of an ice core from the Antarctic Peninsula during the twentieth century. Nat. Geosci . 6 404-411 (2013).

  • 27th

    Trusel, L. D. et al. Diverging pathways of Antarctica digestion during the twenty-two century climate scenarios. Nat. Geosci . 8 927-932 (2015).

  • 28th

    Lecavalier, B. S. et al. High Arctic Holocene temperature record from Agassiz ice cap and Greenland ice development development. Proc. Natl Acad. Sci. USA 114 5952-5957 (2017).

  • 29th

    Walsh, JE, Fetterer, F., Scott Stewart, J. & Chapman, WL A database to display Icelandic isis variations back to 1850. Geogr. Rev . 107 89-107 (2017).

  • 30 °.

    Kinnard, C. et al. Reconstructed changes in Arctic sea ice during the past 1450 years.

  • Nature 479 509-512 (2011).
  • 31st

    Curran, MA & Palmer, AS Suppressed ion chromatography methods for routine determination of ultrafine anions and cations in ice cores. J. Chromatogr. A 919 107-113 (2001).

  • 32nd

    Sigl, M. et al. Timing and climate requirements for volcanic eruptions in the last 2500 years.

  • Nature
  • 523 543-549 (2015).
  • 33rd

    McConnell, JR, Lamorey, GW, Lambert, SW & Taylor, KC Continuous ice-core chemical analyzes using inductively coupled plasma mass spectrometry. Environ. Sci. Technol . 36 7-11 (2002).

  • 34th

    McConnell, J. R. et al. Industrial black carbon emissions from the 20th century changed the Arctic climate change. Science 317 1381-1384 (2007).

  • 35th

    Gfeller, G. et al. Representativeness and seasonality of large ion records derived from NEEM firn cores. Cryosphere 8 1855-1870 (2014).

  • 36th

    Arienzo, M. M. et al. A method of continuous 239 Pu determinations in ice cores in Arctic and Antarctic ice. Environ. Sci. Technol . 50 7066-7073 (2016).

  • 37th

    McGwire, K.C. et al. An integrated system for optical image processing of ice cores. Cold Law. Sci. Technol . 53 216-228 (2008).

  • 38th

    Das, S. B. & Alley, R. B. Characterization and formation of melting layers in polar snow: observations and experiments from the Western Antarctica. J. Glaciol . 51 307-312 (2005).

  • 39th

    Das, SB & Alley, RB Raising the rate of digestion at the Siple Dome through Holocene: evidence to increase the marine impact on the Western Antarctica climate. J. Geophys. Res . 113 D02112 (2008).

  • 40th

    Noël, B. et al. A daily, 1km resolution data of downsized Greenland Balance of Payments Balance (1958-2015).

  • Cryosphere 10 2361-2377 (2016).
  • 41st

    Tedesco, M. Greenland’s Daily Surface Melt 25km EASE-Grid [1988-2013] http: //www.cryocity.org/data.html (City University of New York, New York, 2014).

  • 42nd

    Ebisuzaki, W. A method for estimating the statistical significance of a correlation when data is correlated serially. J. Clim . 10 2147-2153 (1997).

  • 43rd

    Macias-Fauria, M., Grinsted, A., Helama, S. & Holopainen, J. Persistent Subjects: Estimation of Statistical Significance of Paleoclimatic Reconstruction Statistics from Autocorrelated Time Series.

  • Dendrochronologia 30 179-187 (2012).
  • 44th

    Cook, ER, Briffa, KR & Jones, PD Spatial regression methods in dendroclimatology: a review and comparison of two techniques. Int. J. Climatol . 14 379-402 (1994).

  • 45 °.

    Tierney, J.E. et al. Tropical ocean temperatures in the last four centuries reconstructed from coral archives. Paleoceanography 30 2014PA002717 (2015).

  • 46th

    Anchukaitis, K.J. et al. Last millennium northern hemisphere summer temperatures from tree rings. Part II, spatially resolved reconstructions. Quat. Sci. Rev . 163 1-22 (2017).

  • 47th

    Zwally, HJ, Giovinetto, MB, Beckley, MA & Saba, JL Antarctic and Greenland Drainage Systems : //icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php (GSFC Cryospheric Sciences Laboratory , NASA 2012).

  • 48th

    Fisher, D. et al. The latest melting speed of Canadian Arctic ice cubes is the highest in four millennia. Glob. Planet. Change 84 3-7 (2012).

  • 49th

    Vernon, C.L. et al. Limit balance model comparison for the green ice team.

  • Cryosphere 7 599-614 (2013).
  • 50th

    Vinther, BM, Andersen, KK, Jones, PD, Briffa, KR & Cappelen, J. are playing in the late nineteenth century. J. Geophys. Res . 111 D11105 (2006).

  • 51st

    Cappelen, J. (ed) Greenland DMI Historical Climate Data Collection 1784-2017 DMI Report 18-04 DMI, Copenhagen, 2018).

  • 52nd

    Bretherton, CS, Widmann, M., Dymnikov, VP, Wallace, JM & Bladé, I. The effective number of spatial degrees of freedom in a time-varying field. J. Clim . 12 1990-2009 (1999).

  • 53rd

    Hannig, J. & Marron, J. S. Advanced Distribution Theory for SiZer. J. Am. Statistics. Assoc . 101 484-499 (2006).

  • 54th

    Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Light . 39 L01702 (2012).

  • 55th

    Fettweis, X. et al. Estimate of Greenland’s ice balancing mass balance contribution to future sea level increase using the regional atmospheric climate model MAR. Cryosphere 7 469-489 (2013).

  • 56th

    de la Peña, S. et al. Changes in the western Greenland ice sheet caused by the latest warming. Cryosphere 9 1203-1211 (2015).

  • 57th

    Noël, B. et al. A reflection tip accelerates the mass loss of Greenland’s glaciers and ice caps. Nature Commun . 8 14730 (2017).

  • 58th

    Hurrell, J. & National Center for Atmospheric Research Staff (eds) Climate Data Manual: Hurrell North Atlantic Oscillation (NAO) Index-based . https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based (NCAR, Boulder, 2003).

  • 59th

    Hanna, E., Cropper, TE, Hall, RJ & Cappelen, J. Greenland Blocking Index 1851-2015: A Regional Climate Change Signal. Int. J. Climatol . 36 4847-4861 (2016).

  • 60th

    Mann, M. E. & Lees, J. M. Robust appreciation of background noise and signal detection in climate time series. Clim. Change 33 409-445 (1996).

  • 61st

    Schlesinger, M.E. & Ramankutty, N. An oscillation in the global climate system in the period 65-70 years.

  • Nature 367 723-726 (1994).
  • 62nd

    Trenberth, K. E. & Shea, D. J. Atlantic Hurricanes and Natural Varieties in 2005. Geophys. Res. Light . 33 L12704 (2006).

  • 63rd

    Grinsted, A., Moore, J.C. & Jevrejeva, S. Application of the crosswave transformation and wavelet coherence with geophysical time series. nonlinear process. Geophys . 11 561-566 (2004).

  • Share
    Published by
    Faela