Categories: world

Industrial and agricultural ammonia point sources exposed

1. Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources…

  • 1.

    Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale.

  • Nature
  • 525 367-371 (2015).
  • 2.

    Bauer, S.E., Tsigaridis, K. & Miller, R. Significant atmospheric aerosol pollution caused by world food cultivation. Geophys. Res. Lett . 43 5394-5400 (2016).

  • 3.

    Galloway, J. et al. The nitrogen cascade. Bioscience 53 341-356 (2003).

  • 4.

    Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl . 20 30-59 (2010).

  • 5.

    Paerl, H.W., Gardner, W. S., McCarthy, M.J., Peierls, B.L. & Wilhelm, S.W. Algal blooms: noteworthy nitrogen. Science 346 175 (2014).

  • 6.

    Shindell, D. T. et al. Improved attribution of climate forcing two emissions. Science 326 716-718 (2009).

  • 7.

    Sutton, M. A. et al. Towards a climate-dependent paradigm of ammonia emission and deposition. Phil. Trans. R. Soc. B 368 20130166 (2013).

  • 8.

    Reis, S., Pinder, RW, Zhang, M., Lijie, G. & Sutton, MA Reactive nitrogen in atmospheric emission inventories . Atmos. Chem. Phys . 9 7657-7677 (2009).

  • 9.

    Behera, S., Sharma, M., Aneja, V. & Balasubramanian, R. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. Int . 20 8092-8131 (2013).

  • 10.

    Emission Database for Global Atmospheric Research (EDGAR), Release Version 4.3.1 http://edgar.jrc.ec .europa.eu/ overview.php? v = 431 (2016).

  • 11.

    Huang, X. et al. A high-resolution ammonia emission inventory in China. Glob. Biogeochem. Cycles 26 GB1030 (2012).

  • 12.

    Meng, W. et al. Improvement of a global high-resolution ammonia emission inventory for combustion and industrial sources with new data from the residential and transportation sectors. Environ. Sci. Technol . 51 2821-2829 (2017).

  • 13.

    Clarisse, L., Clerbaux, C., Dentener, F., Hurtmans, D. & Coheur, P.-F. Global ammonia distribution derived from infrared satellite observations. Nat. Geosci . 2 479-483 (2009).

  • 14.

    Shephard, M. W. et al. TES ammonia retrieval strategy and global observations of the spatial and seasonal variability of ammonia. Atmos. Chem. Phys . 11 10743-10763 (2011).

  • 15.

    Van Damme, M. et al. Global distribution, time series and error characterization of atmospheric ammonia (NH 3 ) from IASI satellite observations. Atmos. Chem. Phys . 14 2905-2922 (2014).

  • 16.

    Shephard, M.W. & Cady-Pereira, K.E. Cross-track infrared sounder (CrIS) satellite observations of tropospheric ammonia. Atmos. Meas. Tech . 8 1323-1336 (2015).

  • 17.

    Warner, J. X. et al. Increased atmospheric ammonia over the world’s major agricultural areas detected from space. Geophys. Res. Lett . 44 2875-2884 (2017).

  • 18.

    Streets, D. G. et al. Emissions estimation from satellite retrieval: a review of current capability. Atmos. Environ . 77 1011-1042 (2013).

  • 19.

    Zhu, L. et al. Constraining U.S. ammonia emissions using TES remote sensing observations and the GEOS-Chem adjoint model. J. Geophys. Res. Atmos . 118 3355-3368 (2013).

  • 20.

    Van Damme, M. et al. Evaluation 4 years of atmospheric ammonia (NH 3 ) across Europe using IASI satellite observations and LOTOS-EUROS model results. J. Geophys. Res. Atmos . 119 9549-9566 (2014).

  • 21.

    Whitburn, S. et al. A flexible and robust neural network IASI-NH 3 retrieval algorithm. J. Geophys. Res. Atmos . 121 6581-6599 (2016).

  • 22.

    IFDC. Worldwide Ammonia Capacity Listing by Plant . Report No.

  • 24.

    Yasar, S., Orhan, H . & Erensayin, C. Examining the nutritional and production characteristics of egg farms in Basmakci County in Turkey. Worlds Poult. Sci. J . 59 249-259 (2003).

  • 25.

    Theobald, M. R. et al. Ammonia emissions from a Cape Fur seal colony, Cape Cross, Namibia. Geophys. Res. Lett . 33 L03812 (2006).

  • 26.

    Riddick, S. et al. High temporal resolution modeling of environmentally-dependent seabird ammonia emissions: description and testing of the guano model. Atmos. Environ . 161 48-60 (2017).

  • 27.

    Uematsu, M. et al. Enhancement of primary productivity in the western North Pacific caused by the eruption of the Miyake-jima Volcano. Geophys. Res. Lett . 31 L06106 (2004).

  • 28.

    Clerbaux, C. et al. Monitoring of atmospheric composition using the thermal infrared IASI / MetOp sounder. Atmos. Chem. Phys . 9 6041-6054 (2009).

  • 29.

    Clarisse, L. et al. Satellite monitoring of ammonia: a case study of the San Joaquin Valley. J. Geophys. Res . 115 D13302 (2010).

  • 30.

    Van Damme, M. et al. Version 2 of the IASI NH 3 Neural Network Retrieval Algorithm: Near-Real-Time and Reanalysed Datasets. Atmos. Meas. Tech . 10 4905-4914 (2017).

  • 31.

    Walker, JC, Dudhia, A. & Carboni, E. An effective method for the detection of trace species demonstrated using the MetOp Infrared Atmospheric Sounding Interferometer. Atmos. Meas. Tech . 4 1567-1580 (2011).

  • 32.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc . 137 553-597 (2011).

  • 33.

    August, T. et al. IASI on Metop-A: Operational Level 2 retrieval after five years in orbit. J. Quant. Spectrosc. Radiat. Transformants . 113 1340-1371 (2012).

  • 34.

    Van Damme, M. et al. Towards validation of ammonia (NH 3 ) measurements from the IASI satellite. Atmos. Meas. Tech . 8 1575-1591 (2015).

  • 35.

    Dammers, E. et al. An evaluation of IASI-NH 3 with ground-based Fourier transform infrared spectroscopy measurements. Atmos. Chem. Phys . 16 10351-10368 (2016).

  • 36.

    Warner, JX, Wei, Z., Strow, LL, Dickerson, RR & Nowak, JB The global tropospheric ammonia distribution as seen in the 13-year AIRS measurement record. Atmos. Chem. Phys . 16 5467-5479 (2016).

  • 37.

    Wenig, M. O. et al. Validation of OMI tropospheric NO 2 column densities using direct-Sun mode Brewer measurements at NASA Goddard Space Flight Center. J. Geophys. Res . 113 D16S45 (2008).

  • 38.

    Fioletov, VE, McLinden, CA, Krotkov, N., Moran, MD & Yang, K. Estimation of SO 2 emissions using OMI retrievals. Geophys. Res. Lett . 38 L21811 (2011).

  • 39.

    Lu, Z., Streets, DG, Foy, B. & Krotkov, NA Ozone Monitoring Instrument Observations of Interannual Increases in SO 2 emissions from Indian coal-fired power plants during 2005-2012. Environ. Sci. Technol . 47 13993-14000 (2013).

  • 40.

    Pommier, M., McLinden, C. A. & Deeter, M. Relative changes in CO emissions over megacities based on observations from space. Geophys. Res. Lett . 40 3766-3771 (2013).

  • 41.

    Zhu, L. et al. Anthropogenic emissions of highly reactive volatile organic compounds in eastern Texas were derived from oversampling of satellite (OMI) measurements or HCHO columns. Environ. Res. Lett . 9 114004 (2014).

  • 42.

    the Foy, B., Lu, Z., Streets, DG, Lamsal, LN & Duncan, BN Estimates of Power Plant NO ] x emissions and lifetimes from OMI NO 2 satellite retrieval. Atmos. Environ . 116 1-11 (2015).

  • 43.

    Fioletov, VE, McLinden, CA, Krotkov, N. & Li, C. Lifetimes and Emissions of SO 2 from point sources estimated from OMI. Geophys. Res. Lett . 42 1969-1976 (2015).

  • 44.

    Krotkov, N. A. et al. Aura OMI observations of regional SO 2 and NO 2 pollution changes from 2005 to 2015. Atmos. Chem. Phys . 16 4605-4629 (2016).

  • 45.

    McLinden, C. A. et al. Space-based detection of missing sulfur dioxide sources of global air pollution. Nat. Geosci . 9 496-500 (2016).

  • 46.

    Marsouin, A. & Brunel, P. AAPP Documentation, Annex of Scientific Description, AAPP Navigation . Report No. NWPSAF-MF-UD-005 (EUMETSAT, 2011).

  • 47.

    Giglio, L., Schroeder, W. & Justice, C.O. The Collection 6 MODIS Active Fire Detection Algorithm and Fire Products. Remote Sens. Environ . 178 31-41 (2016).

  • 48.

    Whitburn, S. et al. Ammonia emissions in tropical biomass burning regions: Comparison between satellite-derived emissions and bottom-up fire inventories. Atmos. Environ . 121 42-54 (2015).

  • 49.

    Whitburn, S. et al. Doubling of annual ammonia emissions from the peat fires in Indonesia during the 2015 El Niño. Geophys. Res. Lett . 43 11007-11014 (2016).

  • 50.

    Bravi, M. & Basosi, R. Environmental impact of electricity from selected geothermal power plants in Italy. J. Clean. Prod . 66 301-308 (2014).

  • 51.

    Wang, S. et al. Atmospheric ammonia and its impact on regional air quality over the megacity of Shanghai, China. Sci. Rep . 5 15842 (2015).

  • 52.

    Roe, S. M. et al. Estimating Ammonia Emissions from Anthropogenic Nonagricultural Sources . Draft Final Report (US Environmental Protection Agency, 2004).

  • 53.

    Theys, N. et al. Volcanic SO 2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS. Atmos. Chem. Phys . 13 5945-5968 (2013).

  • 54.

    Jacob, DJ Introduction to Atmospheric Chemistry (Princeton Univ. Press, Princeton, 1999).

  • 55.

    Zhu, L. et al. Global evaluation of ammonia bidirectional exchange and livestock diurnal variation schemes. Atmos. Chem. Phys . 15 12823-12843 (2015).

  • 56.

    de Foy, B., Wilkins, JL, Lu, Z., Streets, DG & Duncan, BN Model evaluation of methods for estimatie van oppervlakte-emissies en chemische levensduur van satellietgegevens. Atmos. Environ . 98 66-77 (2014).

  • 57.

    Crippa, M. et al. Forty years of improvements in European air quality: regional policy-industry interactions with global impacts. Atmos. Chem. Phys . 16 3825-3841 (2016).

  • Share
    Published by
    Faela